
TerraME GIMS: An Eclipse Plug-In for
Environmental Modeling

Tiago Lima, Tiago Carneiro
TerraLAB (www.terralab.ufop.br)
Federal University of Ouro Preto

Ouro Preto, Brazil
tiago@decea.ufop.br, tiago@iceb.ufop.br

Sergio Faria
Federal University of Minas Gerais

Belo Horizonte, Brazil
fariamaracai@yahoo.com.br

Pablo Silva, Miguel Pessoa
LEDS (www.leds.ufop.br)

Federal University of Ouro Preto
Ouro Preto, Brazil

{pablosufop, guelmisp}@gmail.com

Abstract—TerraME is a platform for modeling and simulation
of environmental systems that offers a conceptual basis and
services to build environmental models through a high-level pro-
gramming language called Terra Modeling Language. However,
the use of a programming language is still a limiting factor since
its main users are researchers with different backgrounds who
usually lack basic knowledge of algorithms and programming
techniques. So, this work presents the development of TerraME
GIMS, an Eclipse plug-in for environmental systems modeling
through visual metaphors that graphically represent the model.

Index Terms—Visual programming, graphical user interface,
environmental modeling, TerraME GIMS, Eclipse, plug-in

I. INTRODUCTION

The Earth system comprises interaction between socio-
economic systems (of anthropic origins as land use system)
and biophysical systems (of natural origins as the atmospheric
system). In general, Earth system phenomena have a complex
nature like the land use and land cover change process. It
requires the use of modeling and simulation tools to study, un-
derstand and represent the phenomenon. Besides, for dealing
with these problems it is necessary a multidisciplinary team
of specialists from different fields of knowledge. One of the
major challenges is to make explicit the different conceptions
that each person has about a phenomenon behavior and about
the model conception and design. Sophisticated user-friendly
computational platforms are required for dealing with this
problem.

Modeling involves building a simplified representation of
the reality. It helps to clearly define problems and concepts,
and provides means to analyze an observed behavior repre-
senting it in a synthetic environment and reporting simulation
outcomes [1]. Modeling and computer simulation have been
used in scientific researches to address problems of complex
nature, when the solution has a high cost or cannot be obtained
through experiments [2]. Therefore, these methods and tools
are essential to study terrestrial systems behavior, which are
typically represented as spatial dynamic models that describe
spatial patterns of changes evolving over time [3].

The choice of using a particular tool for environmental
modeling can be based on features it offers (e.g. integration
with databases, scientific visualization, modeling language), on
the theory or paradigm on which it is based - System Dynamics

[4] (Vensim, Stella, Simile), Agent Theory [5] (Swarm, Repast,
NetLogo), Cellular Automata [6] (TerraME), Discrete Event
System Specification [7] (JDEVS, CD++Builder). In this work,
TerraME platform was chosen for the following factors: (i)
it allows building models in multiple scales, (ii) it supports
building multi-paradigm models, (iii) it provides scientific
visualization services, (iv) it offers integration with geographic
databases, and (v) it provides a high-level modeling language.

TerraME (Terra Modeling Environment) [8] is a software
platform for modeling and simulation of environmental phe-
nomena. It allows building dynamic spatial models integrated
to a Geographic Information System (GIS). Through Terra
Modeling Language (TerraML), it offers a high level program-
ming language which allows the modeler (user) to represent
data structures and rules that govern the models behavior more
clearly and efficiently than using general purpose program-
ming languages, like C++ or Java.

However, despite TerraML facilitates the representation of
spatial dynamic models, the assimilation of its language con-
cepts and buildings still presents high level learning difficulty.
It still demands some programming skills from the user due
to the inherent complexity of the concepts that it implements
and of environmental phenomena to which it applies. Thus,
professionals and researchers that are not familiarized with
algorithms and programming techniques present difficulties in
its use. This is the case for most of the specialists who are
studying environmental systems like geographers, ecologists,
biologists, sociologists, economists. However, they are the
most interested and involved in modeling of environmental
systems and they have knowledge about application domain.

Therefore, a new and higher abstraction level is needed al-
lowing to focus on solving problems in the application domain.
The representation of models through graphical components
as diagrams, instead of algorithms, should make the process
of building environmental systems models more intuitive and
efficient. It should also increase the productivity of current
users and decrease difficulty and learning time for new users.

This work presents the development of TerraME GIMS
(TerraME Graphical Interface for Modeling and Simulation),
a plug-in for the Eclipse platform which allows users to build
environmental models through a graphical description of these,
and the TerraML source code is automatically generated.

978-1-4673-6288-7/13 c© 2013 IEEE TOPI 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

37



II. TERRAME PLATFORM

TerraME (Terra Modelling Environment) [8] is a soft-
ware platform for modeling and simulation of environmental
phenomena. Under continuous development, it is currently
maintained by TerraLAB [9] and freely available for download
(http://www.terrame.org/). It provides services for describing
and simulating spatial dynamic models integrated to a Geo-
graphic Information System (GIS).

Several studies have used TerraME as a platform for model-
ing and simulation. [10] developed a model for spatial games
and presented results demonstrating how mobility affects the
Nash’s equilibrium. [11] made an analysis over the spatial rela-
tionships between objects at different scales and implemented
through TerraLib two types of relationships - hierarchical and
network-based. The platform was also used by [12] in a case
study where it was analyzed how the existence of different
rules of land use affects the landscape dynamics at regional
level.

TerraME was built based on layered architecture, where
the lower layers provide functionalities over which higher
layers are implemented, as illustrated in Figure 1. On the
lower layer, TerraLib provides services for management and
analysis of spatiotemporal data. On the second layer, TerraME
Modeling Framework provides services for simulation, calibra-
tion and validation of models that can be used through C++
programming language. However, its application programming
interface (API) has a complex syntax and is therefore difficult
to use for people without a great knowledge of programming
techniques. The next layer is formed by the interpreter and
runtime environment of TerraME Modeling Language, which
extends the LUA programming language by adding new data
types designed for dynamic spatial modeling and services for
simulation and evaluation of models. Finally, application layer
is composed of the models developed by users.

Fig. 1. TerraME architecture [8]

The conceptual design implemented by TerraME follows
the scale concept [13]. Thus, an environment on earth can be
described by a synthetic (virtual) environment where analytical
entities (rules) change spatial properties over time. Therefore,
describing a phenomenon as a model is done by representing
its behavior in time and space.

TerraME offers data structures and services to represent
spatial, temporal and behavioral models, as well as to construct
models with multiple scales. Terra Modeling Language (Ter-
raML) permits describing spatially dynamic models through
the following data types: (a) Environment: to represent the
scale concept and to enable the development of models with
multiple scales; (b) CellularSpace, Cell, Neighborhood: to
represent the space, their properties and topological relations;
(c) Agent, Automaton, State, Jump, Flow and Trajectory:
to represent the behavior of system; (d) Timer, Event and
Message: to represent time, defining the instant and execution
order of the events. Also, it is possible to visualize the model
at runtime and save results using the Observer data type.

So, in this work we developed a new layer to TerraME
software architecture, which provides a higher abstraction level
for users. The Eclipse platform is used as base to develop the
graphical user interface (GUI).

III. ECLIPSE-BASED DEVELOPMENT

Developing a computer system and a computational model
for socio-environmental phenomena are essentially similar
activities. Therefore, the use of an integrated development en-
vironment (IDE) with features that support software develop-
ment process is also desirable and applicable on environmental
models building. However, creating a software application of
this nature has a very high cost. A better alternative than
building a new IDE from scratch is to use existing platforms,
tools and frameworks.

Eclipse [14] is an open source platform that provides the
basis to develop tools and applications based on IDE. Its
integration capability achieved by plug-in based architecture
(Figure 2) is a great advantage. A plug-in is the smallest func-
tional unit that can be developed and distributed separately. So,
new applications are developed extending the Eclipse platform
via plug-ins [14].

Fig. 2. General overview of Eclipse SDK [14]

Another advantage of using the platform are the several
frameworks available that facilitate the development of soft-
ware and plug-ins. Particularlly, on development of TerraME
GIMS, the frameworks Eclipse Modeling Framework, Graph-
ical Editing Framework and Graphical Modeling Framework

38



were used. The tools EuGENia [15] and SWTBot [16] were
also used. It was also used a third party plug-in for highlighting
syntax of TerraML source code.

The Eclipse Modeling Framework (EMF) is a modeling
framework for building tools based on a data model. From
a model specification written in XMI (XML Metadata Inter-
change), it provides tools and runtime support to produce a
set of Java classes for the model, a set of adapter classes
that enable viewing and command-based editing of the model,
and a basic editor. Graphical Editing Framework (GEF) offers
technology to create rich graphical editors and views for the
Eclipse Workbench user interface. In turn, Eclipse Graphical
Modeling Framework (GMF) gives a set of generative com-
ponents and runtime infrastructures for developing graphical
editors based on EMF and GEF.

EuGENia is a tool that automatically generates GMF models
needed to implement a GMF editor from a single anno-
tated Ecore metamodel [15] [17]. The high-level annotations
provided by EuGENia simplify the complexity of GMF on
generating basic eclipse-based editors and lower the entrance
barrier for first steps on creating GMF editors. Due to this
features, the tool is used on TerraME GIMS development to
build rapid prototypes for requirements validation. It is also
used to train new team members in GMF and create Eclipse
based editors. Just like EuGENia, the SWTBot tool [16] was
adopted to improve software development process. It is a Java
based UI/functional testing tool for SWT and Eclipse based
applications. Thus, the functional tests of TerraME GIMS are
implemented and automated using SWTBot.

Thereby, when a new feature needs to be developed, like
adding a new TerraML data type to graphical interface, a rapid
prototype is developed using EuGENia and requirements are
validated. Then, EMF and GMF meta-models are updated, the
editor is regenerated to reflect the changes, and plug-in files
(.java, .xml) are customized. New test cases are implemented
using SWTBot. Finally, all the test cases are executed to ensure
proper functioning of the new software release.

The Eclipse platform and its frameworks are being success-
fully used by several projects of similar nature [18] [19] [20]
[21] [22] [23] [24] [25] [26] [27].

IV. TERRAME GIMS

The TerraME GIMS (TerraME Graphical Interface for Mod-
eling and Simulation) [28], is a visual modeling environment
for developing dynamic spatiotemporal models for TerraME
platform through interaction with graphical user interface
components (widgets).

As mentioned above, the development of TerraME GIMS
was based on the Eclipse platform due to its extensibility
and availability of a wide range of public domain software
frameworks. Thereby, TerraME GIMS is implemented and
delivered as a set of Eclipse plug-ins, adding capabilities
for building and viewing TerraME models from graphical
user interface components, such as diagrams, text boxes and
trees. The TerraME GIMS has a layered software architecture
illustrated in Figure 3.

Fig. 3. TerraME GIMS architecture: a new layer between end-user and the
TerraME platform

Figure 4 presents an overview of the TerraME GIMS
graphical interface. Building models using TerraME GIMS
is performed by Graphical Editor and by Project Explorer,
Outline and Properties views. Through Project Explorer View,
users may access the project files and navigate by the model
hierarchically structured as a tree. Elements of the model can
be edited by the diagram Editor and the Properties View. The
graphical representations of the elements of the model are
presented to user in the Editor and their properties can be
viewed and edited from the Properties View. Furthermore, the
Problems view shows errors of the model obtained from its
validation. And the Console view displays the results of model
execution (simulation) in TerraME platform. A Perspective
was implemented to present to users this layout configuration
of the Eclipse interface when working on TerraME projects.

In Editor palette, TerraML data types available for model
building, such as Environment, CellularSpace, Timer, Agent,
Automaton, are presented. Thus, users can compose and view
the model in a diagram way (Figure 5). This facilitates the
construction and identification of composition relationships
between elements that constitute the model. The Editor also
allows displaying and hiding the elements of the model.
Besides, Outline helps users on model manipulation presenting
a model overview.

Fig. 5. TerraME GIMS Editor

Once built the model from the graphical editor and spec-
ified the properties of elements that constitute it, TerraML
corresponding code can be generated and the model simulated
through its execution by the TerraME interpreter.

39



Fig. 4. Editors and Views that composes the TerraME GIMS interface.

V. RESULTS AND DISCUSSIONS

TerraME GIMS was developed to provide a higher ab-
straction level for users, reducing their effort on syntactic
aspects of the programming language. To evaluate and validate
TerraME GIMS features for model building, a didactic model
of the hydrological cycle was proposed [28]. This model
was developed using TerraME GIMS and the corresponding
TerraML source code was generated. A small part of the
hydrological cycle model graphically described using TerraME
GIMS and the corresponding TerraML source-code generated
is presented in Figure 6.

The use of GUI for modeling is a great benefit to those
users who are inexperienced in programming and adoption
of practices to organize code, such as using line breaks and
indentation, which contribute to readability and maintainability
of it. On other hand, the standardized structure of generation
code may limit freedom of users on organizing the model
because of rigidity on customization of the generated code.

Moreover, the automatic code generation saves users effort
on syntactic aspects of the programming language. It allows
them to devote more effort on the representation (modeling)
of the studied object.

The graphical representation of models also benefits the
knowledge communication. The representation of the model
in a higher abstraction level allows viewing and identifying
its elements and relationships in a more intuitive way when
compared to direct use of a programming language. Figure 7
presents a general overview of the hydrological cycle.

The current stable version of TerraME GIMS enables users
to graphically create the following models (using the cor-

responding TerraML data types): (a) multiple scales models
(Environment); (b) spatial models (CellularSpace, Neighbor-
hood); (c) temporal models (Timer, Event and Message); (d)
behavioral models (Agent, Automaton, State, Jump, Flow and
Trajectory). Actually, by a project decision we will not provide
creation and edition of Cells using the graphical interface. GIS
tools are better for this purpose. About features as creating
variables and functions, it is also possible to create them using
GUI. Although it is possible to describe the execution flow
through flowcharts, another decision was not to offer this fea-
ture for now. Thereby, user only has to insert commands on the
model as control structures and mathematical operations. And
all the TerraML source code will be generated by TerraME
GIMS.

A. Lessons Learned
Using the Eclipse platform and its frameworks made the

development and maintenance of TerraME GIMS software
more efficient. Changes in TerraML language could be rapidly
incorporated by the GUI and by the code generator. Nev-
ertheless, keeping TerraME GIMS constantly updated with
Eclipse platform is challenging due to incompatibility between
versions of frameworks and tools used in development. For
instance, SWTBot testing tool is incompatible with Juno
version of Eclipse and, therefore, automated tests are still
being conducted only in Helios version. However, automation
of functional testing is necessary for a good productivity and
quality assurance. Thus, when adopting the development based
on plug-ins, it is critical to consider the risks coming from
the dependence on the technologies used and to evaluate the
feasibility of following the updates of the base platform.

40



Fig. 6. Definition of nested environments using TerraME GIMS: (a) graphical representation; (b) corresponding TerraML source code.

Fig. 7. General overview of the hydrological cycle model.

The facilities offered by Eclipse for building tools based on
its IDE and the use of frameworks that support the model-
driven development (MDD) has enabled rapid prototyping of
the first versions of TerraME GIMS. The initial training of new
developers was facilitated by the use of mature frameworks
like EMF, GEF and GMF. However, building features that
require in-depth knowledge is hampered by literature that
consists in its majority only of superficial examples.

One of the main advantages of development based on plug-
ins is the integration with third party tools, adding important
values for the user with minimum cost. For instance, inte-
gration with LuaEditor plug-in provided highlighting syntax
features. Thus, part of the development effort consists in
researching and analyzing other plug-ins that are available.
Relevant points in this analysis are: maturity, maintenance and
development of plug-ins; size of the user community; quality
of available documentation.

Another point that has led us to development based on plug-
in over Eclipse platform was thinking of a long term strategy
for TerraME GIMS software. We hope that the adoption of an
open source platform with a large community of developers
and users may ensure the future of TerraME GIMS. The
most important challenge will be to encourage contributions
and improvements made by users and developers, making
the software sustainable. Therefore, despite the difficulties
encountered throughout development, we believe development
based on plug-ins to be a good long-term strategy.

VI. CONCLUSIONS

There is a growing demand for environmental models to
help researchers, entrepreneurs and governments in the process
of decision making aiming for interventions with smaller
impacts to environment. Modeling and simulation favor the
understanding of the interaction between biophysical and
human processes. However, building environmental models

41



is a complex task, which requires the use of computational
tools and involvement of a multidisciplinary team. This team
is formed by experts in the domain problem but, generally,
they do not have solid knowledge about algorithms and
programming techniques.

Thus, to make effective the use of all services offered by
TerraME platform, it is essential to offer users a higher level of
abstraction for building models. So, a graphical interface for
development models is been developed. This tool denominated
TerraME GIMS (TerraME Graphical Interface for Modeling
and Simulation) offers a graphical interface that enables its
users to build dynamic spatial models for TerraME platform.

The usage of graphical interface supported by TerraME
GIMS makes it easier to describe conceptual models of studied
phenomena, enables identifying the model components and
the relationships between them in more intuitive way, and
reduces efforts on syntactic aspects of TerraML programming
language.

The strategy of using a plug-in based development and
Eclipse platform and frameworks allows faster results and con-
sequently, the realization of this work. Now, as future works,
we intend to evaluate TerraME GIMS with multidisciplinary
users group.

ACKNOWLEDGMENT

We kindly acknowledge the fruitful discussions with the
TerraME Modeling Group. This work was partially funded by
CNPq (CTINFO 09/2010), FAPEMIG and UFOP.

REFERENCES

[1] M. G. Turner, R. H. Gardner, and R. V. OŃeill, Landscape Ecology in
Theory and Practice: pattern and process. New York: Springer-VerLag,
2001.

[2] P. Bratley, B. L. Fox, and L. E. Schrage, A guide to Simulation, 2nd ed.
Springer, 1987.

[3] B. M. Pedrosa and G. Câmara, Modelagem dinâmica e sistemas de
informações geográficas, 1st ed. Embrapa, 2007, ch. 5, pp. 235–280,
in Meirelles, M.S.P.; Câmara, G.; Almeida, C.M. (org.): Geomática -
Modelos e aplicações ambientais.

[4] L. von Bertalanffy, General system theory. Braziller, 1968.
[5] M. Wooldridge, N. R. Jennings et al., “Intelligent agents: Theory and

practice,” Knowledge engineering review, vol. 10, no. 2, pp. 115–152,
1995.

[6] A. W. Burks and J. Von Neumann, Theory of self-reproducing automata.
Urbana: University of Illinois Press, 1966.

[7] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of modeling and
simulation: Integrating discrete event and continuous complex dynamic
systems. Academic Pr, 2000.

[8] T. G. S. Carneiro, “Nested-ca: a foundation for multiscale modeling
of land use and land change,” Ph.D. dissertation, Instituto Nacional de
Pesquisas Espaciais (INPE), São José dos Campos, SP, Brasil, 2006.

[9] T. G. S. Carneiro, T. F. M. de Lima, and S. D. Faria, “Terralab - using
free software for earth system research and free software development,”
in Proceedings of the X Workshop of Free Software. Porto Alegre, RS,
Brasil: Sociedade Brasileira de Computação (SBC), 2009, pp. 35–40.

[10] P. R. de Andrade, A. M. V. Monteiro, G. Câmara, and S. Sandri,
“Games on cellular spaces: How mobility affects equilibrium,” Journal
of Artificial Societies and Social Simulation, vol. 12, no. 1, p. 5, 2009.
[Online]. Available: http://jasss.soc.surrey.ac.uk/12/1/5.html

[11] E. G. Moreira, A. P. D. de Aguiar, S. S. Costa, and G. Câmara, “Spatial
relations across scales in land change models,” in Proceedings of the X
Brazilian Symposium on GeoInformatics. Rio de Janeiro, RJ, Brasil:
Sociedade Brasileira de Computação (SBC), 2008, pp. 95–107.

[12] P. F. Pimenta, A. Coelho, S. S. Costa, E. G. Moreira, A. P. Aguiar,
G. Câmara, R. Araújo, and A. Ribeiro, “Land change modeling and
institutional factors: heterogeneous rules of territory use in the brazilian
amazonia.” in Proceedings of the X Brazilian Symposium on GeoInfor-
matics. Rio de Janeiro, RJ, Brasil: Sociedade Brasileira de Computação
(SBC), 2008, pp. 81–93.

[13] C. C. Gibson, E. Ostrom, and T. K. Ahn, “The concept of scale
and the human dimensions of global change: a survey,” Ecological
Economics, vol. 32, no. 2, pp. 217–239, 2000. [Online]. Available:
http://econpapers.repec.org/RePEc:eee:ecolec:v:32:y:2000:i:2:p:217-239

[14] Eclipse. Eclipse documentation. [Online]. Available:
http://help.eclipse.org/

[15] ——. Eugenia website. [Online]. Available:
http://www.eclipse.org/epsilon/doc/eugenia/

[16] ——. Swtbot website. [Online]. Available:
http://www.eclipse.org/swtbot/

[17] D. Kolovos, L. Rose, S. Abid, R. Paige, F. Polack, and G. Botterweck,
“Taming emf and gmf using model transformation,” in Model Driven
Engineering Languages and Systems, ser. Lecture Notes in Computer
Science, B. Murgante, O. Gervasi, A. Iglesias, D. Taniar, and B. Ap-
duhan, Eds. Springer Berlin / Heidelberg, 2010, vol. 6394, pp. 211–225.

[18] M. Fontana, F. F. Costa, U. B. Sangiorgi, P. A. D. Bichara, D. G. aes, and
A. C. de C. Lima, “Hiperioncad: a cad tool for design and optimization
of optical telecommunication,” in 10th International Conference on
Advanced Communication Technology - ICACT 2008, vol. 3, 2008, pp.
2027–2032.

[19] D. A. Sadilek and G. Wachsmuth, “Prototyping Visual Interpreters
and Debuggers for Domain-Specific Modelling Languages,” in 4th
European Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA’08), ser. Lecture Notes in Computer Science,
I. Schieferdecker and A. Hartman, Eds., vol. 5095. Springer-Verlag,
2008, pp. 63–78.

[20] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer, “Generation of visual
editors as eclipse plug-ins,” in Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, ser. ASE
’05. New York, NY, USA: ACM, 2005, pp. 134–143. [Online].
Available: http://doi.acm.org/10.1145/1101908.1101930

[21] K. Krogmann and S. Becker, “A case study on model-driven and conven-
tional software development: The palladio editor,” Software Engineering,
pp. 169–176, 2007.

[22] T. Buchmann, A. Dotor, and B. Westfechtel, “Model-driven development
of graphical tools - fujaba meets gmf.” in ICSOFT (SE), J. Filipe,
B. Shishkov, and M. Helfert, Eds. INSTICC Press, 2007, pp. 425–
430.

[23] M. Lipaczewski, S. Struck, and F. Ortmeier, “SAML goes Eclipse -
Combining Model-Based Safety Analysis and High-Level Editor Sup-
port,” in Proceedings of the 2nd International Workshop on Developing
Tools as Plug-Ins (TOPI). IEEE, 2012, pp. 67–72.

[24] S. Zachariadis and T. Cianchi, “Architecting a plug-in based
steam turbine design tool,” in Proceedings of the 1st Workshop
on Developing Tools as Plug-ins, ser. TOPI ’11. New
York, NY, USA: ACM, 2011, pp. 57–57. [Online]. Available:
http://doi.acm.org/10.1145/1984708.1984726

[25] P. E. Salas, E. Marx, A. Mera, and J. Viterbo, “Rdb2rdf plugin:
relational databases to rdf plugin for eclipse,” in Proceedings of
the 1st Workshop on Developing Tools as Plug-ins, ser. TOPI ’11.
New York, NY, USA: ACM, 2011, pp. 28–31. [Online]. Available:
http://doi.acm.org/10.1145/1984708.1984717

[26] G. de Caso, D. Garbervetsky, and D. Gorı́n, “Pest: from the lab to the
classroom,” in Proceedings of the 1st Workshop on Developing Tools
as Plug-ins, ser. TOPI ’11. New York, NY, USA: ACM, 2011, pp.
5–8. [Online]. Available: http://doi.acm.org/10.1145/1984708.1984711

[27] V. Chiprianov, Y. Kermarrec, and S. Rouvrais, “On the extensibility
of plug-ins,” in ICSEA: 6th International Conference on Software
Engineering Advances, Barcelona, Espagne, 2011, pp. 557–562, 11003
11003. [Online]. Available: http://hal.archives-ouvertes.fr/hal-00725543

[28] T. F. M. de Lima, S. D. Faria, and T. G. de Senna Carneiro,
“Development of a didactic model of the hydrologic cycle using
the terrame graphical interface for modeling and simulation,” in
Computational Science and Its Applications - ICCSA 2011, ser.
Lecture Notes in Computer Science, B. Murgante, O. Gervasi,
A. Iglesias, D. Taniar, and B. Apduhan, Eds. Springer Berlin
/ Heidelberg, 2011, vol. 6785, pp. 75–90. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2029365.2029373

42


